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ABSTRACT

---,The sensitivity of planetary waves to various initial

conditions and thermal forcing is examined using a linear

global primitive equation spectral model.

Initial conditions are oktained by switching on a
analytic heat source and then integrating the model equa-

tions out to 30 days. An averaging procedure is used to

eliminate any transient modes which remained after integra-

tion so that the initial conditions represent steady state

solutions. Additional integrations are performed in which

'errors' are introduced into the forcing and initial

conditions.

Results of the study are examined using polar phase vs

amplitude plots (harmonic dials) of various spherical

harmonics. Results indicate that planetary waves are not

sensitive to errors in the forcing or initial conditions.

However, this lack of sensitivity is most likely due to the
simplified initial conditions used in the model rather than

to the inherent sensitivity of Flanetary waves.
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I. INTRODUCTION

Atmospheric predictability studies (Lorenz, 1969) indi-

cate each scale of motion has a limit to it's predict-

ability. Small scale motions are theoretically predictable

to an hour, synoptic scales to a few days and planetary

scales to a few weeks. However a number of studies, Lambert

and Merilees (1978), Baumhefner and Downey (1978), and Morse

(1983), have shown that synoptic scale motions, rather than

planetary scale motions, are the most accurately forecast.

Fig. 1.1 is taken from Daley et al (1981). It gives the

500mb geopotential forecast error from the 6-level National

Center for Atmospheric Research global circulation modei as

a function of wavenumber. The error for each wavenumber has

been normalized by the natural atmospheric variance for that

wavenumber. Note that as previously stated the synoptic

scales(wavenumbers 4-8) are in fact the most accurately

forecast. This result does not seem to be dependent on the

type cf model used. Baumhefner and Downey examined a number

of different models and found similar results. The error in

forecasting planetary scale waves might not seem to be that

important given that the error in the synoptic scales is

smaller and that these are the scales of motion which

produce most of the day to day weather changes. The impor-

tance of an accurate planetary scale comes to light when one

starts to consider medium to long range forecasts (up to 10

days). Since the planetary waves often act to steer the

smaller synoptic scale disturbances an improved planetary

* scale forecast would presumably lead to an improved forecast

on the synoptic scale. In addition, the planetary waves

contain a major portion of the eddy kinetic energy in the

atmosphere and again a better long wave forecast would lead

to a better synoptic scale forecast.

9
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There are at least two possible reasons why planetary

waves are not forecast as well as theory suggests. One is

NORMALIZED RMS ERROR

.0

.6-
.5

4P

.2

S 234 6 8 10 11 12 13 14 16 17 18

WAVE NUMBER

Figure 1.1 Forecast Errors for 1, 2
and 3 Days of Integration.

that the model dynamics for planetary waves are inadequate.

Given that planetary waves are quasi-stationary in nature

and are forced in part by differential heating and orograihy
it would seem reasonable to suspect that inadequacies exist

in the dynamics of the model's forcing. Another possibility

is that current initialization procedures are not adequate

for planetary scales.

It is the purpose of this study to examine the nature of
planetary waves and to deteraine the sensitivity of

10



planetary waves to initial conditions and forcing. Chapter

two of this thesis dEscribes the modiel used in this study.

The third chapter outliLes the nature of the experiment. In

the fourth chapter the results of the experiment are

presented and in the final section these results are

discussed and some conclusions are drawn.
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£,,-, I1. MODEL _D_9ArPTION

The model used in this study is a baroclinic spectral

transform model which was developed by Rosmond (1977).

Similar formulations have been carried out by Hoskins and

Simmons (1975) and by Bourke (1974). The model is config-

ured to include friction and/or diabatic heating. The

specifics of how friction and diabatic heating are included

in the model will be discussed in the next section. The

*- basic equations of the model, in sigma coordinates, are as
follows:

.- ), _ -. ( ,+f)V-k.4x(RT~q+d2cI)+4.'x (2.1)

?_ D~ .x ( +f) V-V. (RT~q+d )-42( e+i )+V.F122
at -

at

= (2.3)

36 -4v-q-
3 0 ^+6.aeo+Q (2-4)

at ac3oPCP

-- RT (2.5)

where:

- vorticity

D - divergen,.e

r--.- I- temperature

"0 -potential temperature

- surface pressure

V - horizontal velocity vector

- geopotential height

R- gas constant

Cp- specific heat at constant iressure

f - Coriolis parameter

12
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II

o - vertical coordinate (a = P/i)

- vertical velocity (d ( -T )
dt

- ln

P-p

- R/Cp

* F- frictional force

The continuity equation (Eq. 2.3) may be rewritten by

integrating with respect to sigza and applying the boundary

conditions 6(0)=a(1)=O. Thus the integral of Eq. 2.3 maybe

written as

- - D(2.6)

where () = ftC )da and G= V ,Vg.
0

The vertical velocity, 6, may be obtained diagnostically

by substituting Eq. 2.6 into Eq. 2.3 and integrating in the

vertical to obtain

S + _ +d (2.7)

0

which uses (0 )=0

The first law of thermodynalics Eq. 2.4 can be written

3T -q (2.8)3t-' Cy(o +CTt;2+ Cp

In order to apply semi-implicit differencing it is necessary
to divide temperature as follows:

T = T"(a)+T'(a, X, T, t) (2.9)

where T* represents an appropriately averaged temperature.

The basic equations can be conveniently written in

spherical coordinates by defining the following operator:

13
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ct(a,b) -- 1 r- (2. 10)

Using Egs. 2.9 and 2.10 the basic equations can be written

as follows:

_-a -(AB) (2. 11)

3D k2(2. 12)= a(A,B)-, CE+ +RT*q)

3T K a -4C (2. 13)
at alr',T)u'-j~aT )+KT(G- ;-Th)

(2. 14)

-MR (2. 15)

where

3Vu T 2 apqa XI 2A (+fU+ -( - F

U aq X Vax

E = CU2+V2 )/2 (1_X 2)

U u(cosTV)/r.

V =v(cosTI)/r

x =sinTi

Tj latitude

X lon~gitude

14



Eqs. 2.10 -2.15 are the basic equations used in the model.

These eguations are represented spectrally in the horizontal

and finite differenced in the vertical.

A. VERTICAL STRUCTURE

The vertical structure of the model follows the develop-I ment given by Arakawa and Suare2 (1983) . The variables are
staggered in a so that ?, D, U3, V and T are carried at the

mid-point of each layer where 0 = a)k and 6 is carried at the

K top and bottom of each layer where a =ak . The vertical

structure is illustrated in Fig. 2. 1. The finite difference

form of Eqs. 2.10 -2.15 are

~~(A, B) (2. 16)

~Tk

kk k k

( B (.Ek T -T ) + A ( -k T )+Q/Cp
.a k+1 k P k+i 1 k Ak(k- k-i

~ Cp(Pk iP X(Akik+BkTk+l) (2. 20)
'kk+1i+ Pk Pk+J.

~Lf~+P~MKM1 (2. 21)

*CT JP -1

a' (GD-T (G + . a(. 2

Kk+1 0k )( k+1 -3 )

k+15

K - *
1+K 1+K

*.* IT .Y a



K- D K-1 TAK1  01K1 O -I O -

KDK TK, AuK K,

KlDK1TK+I C K+1 (+1 OK.1

c~DI T Au L

Figure 2.1 Vertical Structure.
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A = (Vf V+{k (Vk-Vk)+6k(VkVk)1 /2A

k k+1 k+i k k k k-i k 116
~~~~~~+{RTIk(1_X2 ) I 2  (T--~rF

B = (+f)Vk+{ k+(U k+-U k)+a (U k-U k)} /2Ao k

-(CpRT'/r) + (/l -I 2 /r)F
k ax

D I-Vk

Ak= (P / (P -Pk)
k k- k k- k(Pj Pk-Pk )

-

Bk = (Pk+l-Pk M(Pk+l-Pk) lAk

Egs. 2.16 - 2.22 can be written in matrix form, such

that the terms on the right hand sides contain all the terms

which are to be evaluated explicitly and the left hand side

contains those terms which are to be evaluatel implicitly.

Eq. 2.20 can be combined with an integrated finite differ-

ence form of Eq. 2. 15 to obtain

C (2.23)

where C is a square matrix and the other quantities are
column vectors. The finite difference form of the surface

pressure tendency eguation(Eg. 2.14) is

Z(G +D)C (2. 24)at k Dk) Ak

which can be written in matrix form as

-i = NT (G+D) (2.25)
m-3

17



T

where N is the transpose of a constant column vector.

Similarly Ey. 2.22 can be written

a Z+(2.26):!. o :Z(G+D)

The next to last term in Eq. 2. 19 is

ak+iBkP k k-T T )+dk A (T - ) (2.27)
k1kPk+1i+ k1k k-1k-1

For the purpose of seni-implicit formulation, the tempera-

ture is separated according to Eg. 2.9. The mean part of

that term can be written as

d B k( T + -T*)+6A (T*- -- T*) M(G+D) (2.28)
k-I1 k P k+1 k k-i k Pk+1 k- 1

Egs. 2.17, 2.19, 2.23, and 2.25 may now be written:

-+V($,+RTnq):(B,_A)_ 2E D (2. 29)
at '

- ,(2.30)
at

T ( D (2.31)

= C (2.32)

T
whereQ = 'T*N and = and KD and Km represent

terms which have not been explicitly separated out.

The semi-implicit time differencing is achieved by eval-
udting the terms on the left hard sides of Eqs. 2.29, 2.30

. and 2.31 implicitly. The remaining terms and Eq. 32 are

evaluated explicitly using leapfrog differencing. The

difference equations can now Le written"-:i: - ~2 -(C _ ,q +1
Dn+At T(C +R

.2 
. 3 3 1

.*n-i - 1
r-18



T +A tQn+ = n-1 - AtQD n - -2Lt('T n (2.34)

-T T (2.35)q[ qn+l+AtN D = qn-l- n-i - 2 A t N G

Now the following eguation for D can be found by substi-
" tuting Eq. 2.34 and 2.35 into 2.33:

="B 2At(K) Cf q" (12 36)r.-,' B n+1 + B n-1 D n 2t a n-l+RTq- n-l+(= T )n "

-RT*N G

where the matrix operator B is

-"".-- (2. 37)
B+ At2 (C Q±RTNT )V2+I

B. SPECTRAL FORMULATION

The equations (2.10)-(2. 15) are represented spectrally
in the horizontal. The variables are represented as
follows:

C~~k , x, , t) = =m= j m Cnm(a, t)pm(x)eim A (2.381

%-oJ j
cm1 Ifymm=-J njm n n

m=- nHi~n' 
-Mwhere C is some variable and (cn = (-1) Cn

m = zonal wavenumber

n = meridional index, and n-jul gives the number of zeros
between the poles (-1 _ x _ 1) of the associated Legendre
function
j = truncation limit(for this study triangular truncation
was used with J=3)

= (1-1)/2 nondimensional zcnal coordinate index
(1 _5 1 _< 16)

19
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Note that the separation is such that the coefficients Cn

are functions of time and the vertical and the spherical
harmonic Yn are horizontal functions of space. The normali-

. zation and orthogonality properties of the ym allow the
n

coefficients to be obtained as follows:

C 2r 1 m (2.39)n n 4- CYdxdX

" The non-linear terms are computed using the transform method

following Haltiner and Williams (1980) . The longitudinal

direction is treated with a Fast Fourier Transform and the

latitudinal direction uses Gaussian Quadrature. The number

of latitudes, N and longitudes B satisfy.

* N > 3J/2 +1 m > 3J+1

The number of points are chosen so that there will be no

aliasing from the product terms. For this study N=4 and

M=16. It was discovered just before this study was

completed that number of Gaussian latitudes used to compute
the latitudinal integrals was actually J+1 and not 3J/2 + 1.
However, model integrations using J +1 latitudes are not
qualitatively different than thcse using 3J/2 + 1 latitudes.
Even the quantitative differences are small, and will occur

mostly in the non-linear integrations. Since the cases

examined in this study are carried out using a linear form
*. of the model, one would not expect much error.

20
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III. EXPERIMENT DESIGN

The intent of this study is to specify a known analytic

heating function on a planetary scale and then integrate the

equations until the model atmcsphere reaches a steady or

quasi-steady state. These steady state solutions will be

altered and/or the heating will be changed. The equations
will then be integrated again to determine the sensitivity

of planetary waves to changes in the forcing and initial

conditions

*, Heating is introduced into the model via the thermody-

namic equation (2.4). Q is specified to be a Legendre

function of the form:

Q(A, x, oa) m m We inx (3.1)
Mn- n inn n

Am is specified to have the vertical structure:n

m = - (3.2)
n .3

only one wave form is forced at a time and the other heating

amplitudes are set to zero. The constant A is chosen to

give a reasonable temperature response. In most cases a
temperature response of a few degrees is used.

Before the heating is "turred on" the model atmosphere
is specified to be in a state of solid rotation

Cos
V =0

. such that U 20 m/s(15.5 O/day) at the equator. The
surface pressure field is chosen to balance the mean flow.

-,- The initial vertical temperature distribution is given by

the standard atmosphere values consistent with the pressure

21
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distribution given by solid rotation. A lapse rate of 6.50

per kilcmeter is specified tc the top of the model

atmosphere.

TABLE I

Waves Forced for linear Cases

Case Wave Forced

m n

2 1 2

3 1 3
4 2 2

5 2 3

6 3 3

In all of the experiments the model is run in a linear

mode. In this mode the amplitudes of all zonal wavenumbers

except those being forced are held constant. The model is
run in a linear mode in these experiments to allow a more

definitive interpretation of the results. Six linear cases

are integrated, each case with a different forced wave
form. For example in case 1 (_see Table I) zonal wavenumber

one(m=1), meridional index one (n=l) is forced. The results

from these cases are fairly similar so only the longest wave

case (case 1) is analyzed in detail.

Two classes of cases are examined using the steady state
values. In the first, the magnitude of the heating function

is changed and the mcdel is integrated from the steady state

values. In the second, the magnitude of the steady state

* values are changad and then used as initial conditions for

further model integrations. In the these cases the heating

. function is the same as the one originally used to bring the

model to a steady state.

22



IV. RESULTS

Due to the similarity of the six linear cases only cases

1, 5 and 6 will be discussed. These three cases represent

the three zonal wavenumbers(1, 2 and 3) and the two asic

meridional structures possible in the model. Cases 1 and 6

are symmetric in their meridional structure while case 5 is

anti-symmetric. The primary tool used to analyze these

cases was the harmonic dial. These diagrams are polar Flots

of phase and amplitude for a given spherical harmonic. This

plot has the advantage that the quasi-stationary and tran-

sient nature of the waves are easily seen. Fig. 4. 1 is a

good example upon which the merits of the harmonic dial can

be explained. In this figure the phase and amplitude for

the temperature wave for case 1 are plotted every 12 h. The

elapsed time since the start of the integration is indicated

every 5 days. For an ideal case where there is a stationary

and a transient component one wculd expect to see a circular

pattern which is confined to a Farticular quadrant. This is

because as the transient wave moves through the staticnary

wave it will come in and out cf phase with the stationary

wave. The maximum amplitude occurs when the transient and

stationary waves are completely in phase and the minimum

amplitude occurs when the waves are 1800 out of phase. A

*rough estimate of the phase speed of the transient wave can

be obtained by observing the change in phase with time as

plotted on the diagrams. The direction of propagation can

be determined by observing the direction of the phase change

on the dial. A counterclockwise change in phase indicates

eastward propagation, a clockwise change indicates westward

propagation. In Fig. 4. 1 the phase speed of the temperature

wave at a = .925 can be easily estimated. The period of theI

23
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- wave is 21.5 days, thus the phase speed in degrees per day
is 360/21.5=16.74. The direction of propagation is east-

PHASE VS AMPLFUDE

FOR TDAPERATURE

I I

/C

... .. 925

Figure 4.1 Harmonic Dial for Case I Temperature Component.

ward. Another important point to note here is that, given

the uniformity of the change in phase, the phase sped of

the transient component is constant. The harmonic dials for

surface pressure, temperature and the zonal(U) and uieri-

dional (V) wind compcnents for the lowest model level are

shown in Figs. 4.2 - 4.7 Only those components which have

significant amplitude are shown in these figures. In all

cases the pressure and winds waves show a much more irreg-
ular pattern than the temperature wave. These irregulari-

ties might be due to the presence of a number of transient
modes components with periods much less than that indicated

by the overall pattern. Table II gives the estimated period

(in days) and phase speed (in /days) for the temperature,

surface pressure and Lhe V and U wind component waves for

24
[ ... . . . . . .

4. .srae rsur n .. he V. and*** .. win copoen wa.es o.
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the three cases being considered. These estimates were

obtained from Figs. 4.1 - 4.1 . Phase speeds were not

calculated for the pressure and wind waves for case 5 due to

the highly irregular nature of those dials. The phase speed

of the temperature, pressure and wind waves are the same for

wave component (3,3). Such is not the case for the other

cases, though the phase speed are similar. The computed

phase speed of the different variables for case 1 varies

from 15.6 O/day for P to 18.5 O/day for U. The other cases

have similar phase speeds for the different components. The

general pattern which emerges from the data is that the

phase speed of the transient components seems to be indepen-

dent of wavenumber and that the waves are moving at approxi-

TABlE II

Period(p), and Phase Speed(c) for Transient Components

Case Case Case5 --5-

p c p c p c
P 22.5 15.6 , * 7.5 16.7
T 21.5 16.7 12.5 16.7 7.5 16.7
U 19.5 18.4 * * 7.5 16.7
V 21.5 16.7 * * 7.5 16.7

mately the speed of the mean wind(15.5 O/day). To test this

hypothesis additional integraticns were accomplished holding

all other factors the same but increasing the speed of the

mean wind. The results of these integrations showed an

increase in phase speed of the component waves corresponding

to the increase in the mean wind speed

A. STEADY STATE CASE

Since the purpose of this study was to see how sensitive

the steady state solutions are to errors in the forcing and

initial conditions it is important that the steady state
*
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solutions of the model be examined to insure that they are

indeed steady and that these sclutions are consistent with

known theory.

To obtain steady state solutions the basic equations

were integrated up to 30 days. It is obvious from Figs.

4.1-4.7 that after a rather lengthy integration the model

atmosphere has yet not reached a steady state and that in

fact the transient modes identified in the last section are

clearly evident throughout the period of integration.

Though there are indications that the solutions are -lowly

converging as indicated by the begining of spiral patterns

in Figs. 4.1-4.7 a final steady state would not be reached

for some time. However, by averaging over the period of the

transient wave, it's effect can be averaged out. The

remaining values are the steady state values. The above

procedure was performed on case 1. To insure that the part

of the solution which remained after averaging was truly the

steady state solution another integration was performed

using the averaged values as the initial conditions.

Harmonic dials were again constructed for each of the vari-

able wave components. If the fields obtained by averaging

were truly the steady state solutions, one would expect to

see no phase or amplitude change with time, i.e. the

harmonic dial would collapse to a single point. Figs. 4.8
and 4.9 contain the harmonic dials from a 20-day integration

initialized with the averaged values for case 1. The

temperature wave is almost completely stationary, but the

pressure and velocity components have small growth and move-

ment. The fact that the pressure and wind component waves

are not completely stationary is another indication that

there are transient modes in these waves which are not

contained in the temperature wave. Consequently, the aver-

aging which was performed over the period of the temperature

wave did not average out all of the transient parts of the

pressure and wind waves.
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It appears from the above integrations that solutions

obtained by averaging over the period of the transient

component are very close to steady state values. In order

to better understand these solutions they will be compared

to the steady state solutions from a simplified analytic

model. This model will be derived in the next section.

B. TEE INALYTIC MODEL

The predictive system of equations for planetary scale

motion in Z=-ln(P/P coordinates are:

D+-z (

Ail .Ga! (4.2)
at- )+ + V z -+Zr(z)+Zr' Q(Z)

-+ -k7(4.3)

where

•~~~~~~ .1 D.T -' - v 2 )

" -- /p

aZ az T Cp HD

H 2  RT/g

Hg_= + 1 aI)
T Cp H Z

Eq. 4.1 is the continuity eguation, E:.. 4.2 is the first law

of thermodynamics and Eq. 4.3 is the geostrophic relation.

"hese equations were obtained ty scaling the general taro-

clinic eyuations (Haltiner and Williams, 1980) with:
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.- .• J T

L/a-1 R <.01 E -100 fa/f -1

where L is the horizonal scale, R is the Rossby Numberanr E

is a rotational Froude number. Assuming a steady statp

* atmosFhere ( 0t o ) in solid rotation (U= (oa cos ) and

droping the ,(Z) term, because it is small, Eq. 4.2 becomes:

- = Q(Z)

The meridional and zonal components of the geostrophic wini

in spherical coordinates are:

'v 
( , 4.51

V 2aicossin' DX

U = 2a sinT aT (4.6)

Using Egs. 4.5 and 4.6 the divergence in spherical coordi-

nates can be written:

D- 2cos (4.7)D = 2 a .?sin ' f

Now Eq. 4.1 can be written:

1Z (4.8)

aZ a2 sin2 'iX -0

Assuming solutions of the form:

= W(Z)eimlm ) (4.10)--? z P (y)

Q N(Z)eimAPm(q) (4. 11)
n

Eq. 4.4 and 4.8 become:

wim' (Z)+FW(Z) N(Z) (4. 12)
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Sim (4. 13)
a2Qsin2T

Eq. 4.12 and 4. 13 can be combined to obtain a single equa-

tion for W

wa 2 Qsinz (W"-W' )+FW - N (4 .1)

Eq. 4.14 is just a 2nd order ncnhomoyenous ordinary differ-

ential equation for W whose general solution is of the form:
W C W +C2 W 2+W

1122 p

Phere P1, W2 are the solutions to the homogeneous part of

Eq. 4.14 and Wp is the particular solution. Assuming N(Z) =

2NO~c the solution to Eg. 4.14 is

e r er+ +C 2 er-Z+Ae -LZ e Z/2(Cleq +2 e-q (4.15)

where
1 1 +2

2- 2 scme positive number

A = N /(Wa 2 sin 2/T +a2)+r )0

There are two possible solution cases for the homogeneous

part of Eq. 4.14. If q 2 is positive the solution consists

of an exponentially growing and decaying part. After

applying the boundary conditions w(O)=O and finite energy at

Z=-, i.e. (pUlf 2 ) = e-71tj2 the solution becomes

2 q 2 z(4. 16)W(Z) =Ae -CL e Z/2 e(
0

An expression for D(z) can be obtained by substituting Eq.
4.16 into Eq. 4.13
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D(Z) -a 2sin'Ater (r-l)+e (14+ Q2)l (4.17)

If q2 is negative the solution will be oscillatory in Z and

of the form

W(Z) = Z/2(C 1-ie Z +C 2i Z)+Ae-c 2Z (4 18)

where

=  /a22sin2T - 1/4 (4.19)

After applying the radiation boundary condition at Z=- i.e.

w(Z) db(Z)>0 and the lower boundary condition w=0 at Z=0 Eg.

4.18 bEcomes

3i _ ( +iii)Z cL-2Z}1 2 1W(Z) :A((2 3 )e --+ W _i(-l-a2 )e- L2z(. 0

The corresponding expression for (z) is

2. ( (-i-)Z e- Z} (4.21)(D(Z) = a 2 sin2 A(( 3 -P)e ( -i(-jl-2 )e t2z(. 1

Eqs. 4.16,4.17 and Eqs. 4.20,4.21 can be substituted into

Eqs. 4.9 and 4. 10 to obtain exfressions for and Z. After

taking the real part the g2 > 0 solution are

2 zZ 1-a2Z (4. 22)
aQsin2A{e rZ(r-l)+e - (+a )]sin(mA)p

n

A"e-ctZ rZ m (4.23)
Z A te -e )cos(mX)P

n

The q2 < 0 solutions are

= 2 Z/2 3 (4. 24)
a sin TA•e (-sin(PZ+mX)

2 pm

+pcos(jZ+mX) +(1+L
2 )e -  sin(mX)) P

* n
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Z A{e- (e cos(PZ) )cos(m) (4.25)

+(e7/ sin(o'Z) )sin(mX) -m
n

If q 2 > 0 the response of the atmosphere to heating is

trapped near the surface and the vertical structure is one

in which the waves have no tilt with height. If q 2 < 0 the

perturbation due to the heating will radiate to great

heights and the waves will tilt westward. In both cases the

steady state represents a balance between advection, adia-
batic warming (cooling) and diakatic heating (cooling) . The

longitudinal and latitudinal structure, for each case, will

be determined by the forcing specified. That is, if waven-

i -umber one is specified in the forcing term, the steady state

solution will have a wave one fcrm- In addition, since the

winds are geostrophic their structure will be determined by

the structure of t' Eq. 4.24 can be written

-A((3 eZ/2sin(pZ)-eZ/ 2 cos ( Z) cos(mX) (4.26)

3+Z/2 Z/2 2+(e cos(Z)-pe sin(wZ)-(l+a2)e )sin(mX)}Pm

which can be written in the form

(G(Z)cos(nX+H(Z) )}A(P) Pm(T) (4.27)

n

This form allows comparison with the phase and amplitude of
the model Legendre functions. If the model steady state

solutions really are steady state one would expect them to

at least qualitatively agree with the analytic solutions
derived above. The differences between the numerical model
atmosphere and the analytic atmosphere are:

1. A nondimension vertical ccordinate Z is used in the

analytic model while sigma coordinates are used in
numerical model,

2. Friction is not included in the analytic model, and
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3. r(Z) is assumed to be constant in the analytic model

while it is not in the numerical model.

r(Z) is not constant in the numerical model because p(z) is

constant. The fact that r(Z) is not constant given P (z) is

can be shown by examining the equation for P (Z)

2(Z 9 T 7 1 3T (14.28)
rCZ) (. ( + H - )

After converting to z coordinates Eq. 4.28 becomes

H2  + (4. 29)
T Cp 3z

Since the lapse rate is a constant 6.5 O/Km in the model the

second term in Eq. 4.29 is constant but T decreases with z

so the first term is not constant thus r (Z) will not be

constant in the model atmosphere. However, since the

decrease in temperature is rather small compaLed to the

mean temperature r (Z) is nearly constant so that qualita-

tive comparisons are still possible. In addition, the

vertical structure of the forcing in the analytic model is a

simple exponential form e while in the model it is of
C-I P-Psthe form e = e--. However, given that is chosen such

300z
that the e-folding depth of e is the same as that for

e- then the two functions will be similar except for the

upper levels where both functions are small and have little

effect on the total solution. Fig. 4.10a is a plot of the

numerical model forcing vertical structure where P is

assumed to be constant and equal to 1000mb. This is not a

bad assumption because the model contains no topography and

the maximum pressure perturbaticns are only a few. millibars.

This assumption also allows qualitative comparisons between

variables in and P coordinates. The e-folding depth here

occurs at P=700mb. For P=700 , Z=-ln(700/1000)=-ln(.7).

Thus, to have the same folding depth a2 must be choosEn to
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be equal to 1/(-ln.7). Fig. 4.10b is a plot of -,C2Z

converted to P coordinates. Note that the plots are very

similar up to 400mb. Figs. 4.11a and 4.11b are plots of

G(Z) and H(Z) vs pressure using the following estimate for

the various parameters in Eq. 4.19: w =(20 m/s)/a, F- (Z)
H2N2 , H=10km, N2=10-4s-1, a=6.37 x 106 m and S2 7.292 x

10-Ss-I . Figs. 4.12 and 4.13 contain plots of the steady

state model solutions for the aeridional (V) and zonal (U)

wind vs sigma for case 1. Since the winds are geostrophic

the vertical structure U and V can be compared with the

vertical structure of . Note the striking similarities

between the two sets of figures. Both amplitude plots show

a slight decrease in the lower layers and an exponential

increase near the top of the atuosphere. Also, given Figs.

4.1, 4.15 and 4.16, it is obvious that the model's steady

state solutions have the longitudinal wave one form speci-

fied in the case 1 forcing term. These figures are hori-

zontal cross-section for vorticity, meridional velocity and

temperature near the top and bottom of the model atmosphere.

Contour intervals are indicated at the top of each cross-

section. The vertical scale at the bottom of the figures is

used to represent topography, which is not included in this

model. It is clear that the steady model solutions are

qualitatively consistent with the analytic solutions and

that the method used to determine these values was a sound

one. The question might now be asked why are the model

* solutions oscillatory in nature? Is it not possible that

they could be of the exponential decaying type? These ques-

tions can be answered by examining Eq. 4. 19 more closely.

Given that

.01
F/ca 2sin 2y > 1 (4.30)
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d

the solution will be oscillatory. In the model, w is speci-

ti ed so that the zonal wind is equal to 20 m/s at the

equator so that U= w a cos U=wa at =0 thus w=U/a. Given

"-H2 N2 , H-10 kin, N2 =10- 4 s- 1 , a=6.37 x 106 M, Q =7.292 x

10- 5 s- 1 one can try to solve fcr d latitude where the solu-

tion will no longer be oscillatory. After using the above

values Eq. 4.30 becomes

sin 20.84 (4.31)

which has no solution. Thus there is no point where the

solution would not be oscillatory. To obtain non-

oscillatory solutions one would have to increase the zonal

wind speed to almost 100 m/s. Using these steady state

solutions it is now possible to examine the sensitivity of

these solutions to changes in the forcing and initial

conditions.

C. SENSITIVITY EXPERIMENTS

Using the steady state solutions from case 1 as initial

conditions two additional experiments are carried out to

determine the sensitivity of the planetary waves to 'errors'
in the forcing or initial conditions. In the first experi-

ment errors are introduced in the forcing field. In fact a

100% error was introduced by turning off the forcing alto-

gether. The model is then integrated out to 20 days. Figs.

4.17 and 4.18 contain the harmonic dials for the above inte-

gration. Note that for the most part the once quasi-

stationary solutions are now almost purely transient since

the phase through the entire range of phase. In the previ-

ously observed pattern the stationary plus transient nature

of the waves was indicated by a change of phase and ampli-
tude which occured in a particular quadrant of the dial.
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-. The estimated phase speeds obtained from Figs 4.17 and 4.18

show these transient waves to again be moving at the speed

of t.e mean wind. The fact that the waves are pure tran-

sient now is not surprising since the heating is no longer

present to fix the wave to a particular location.

In the second experiment errors are introduced into the

rotational part of the steady state wind by reducing those

components by 20%. 1he model is again integrated out to 20

* days. Figs. 4.19 and 4.20 ccntain the harmonic dials for

this integration. From these figures one can see that the

only wave which is moving easthard is the temperature wave.

All the other component waves are moving westward. The

temperature wave has a phase speed of about 12 O/day at the

equator which is about 25% slower than the mean wind. It is
evident that the j are a number of high frequency components

present in the other component waves which are not present

" in the temperature wave. Since there is no simple circular

* .pattern for the wind and pressure waves it is difficult to

obtain the period of the transient part of the solution.

The exact phase speed of these wave is not important. The

important thing to note here is that the waves are moving

slowly westward.
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V. DISCUSSION ANr CONCLUSIONS

The results of the previous section are best discussed

in terms of normal mode theory. A number of investigators

(Geisler and Dickinson, 1976, Daley et al, 1981, and

Kasahara 1976) have used this method to examine the tran-

sient part of planetary waves. The method basically

consists of solving the linearized set of equations

describing oscillaticns of a stratified resting atmosphere
on a spherical earth by separating the equations into a

latitudinal structure equation and vertical structure equa-

tion. The vertical structure equation determines the

vertical modes of oscillation. The separation

constants(eigenvalues) from the vertical structure eguation

can be used to find the eigenfunctions of the latitudinal
structure equation. The latitudinal structure equation for

a given eigenvalue is identical to a fundamental equation of

a free surface, if the eigenvalue is replaced by the uniform

depth of the fluid. This equation was first obtained by

Laplace in his study of free oscillations of shallow water

over a rotating sphere. For this reason the horizontal

structure equation is often referred to as Laplace's tidal

equation and the eigenvalues are referred to as equivalent

depths. The mode associated with the largest equivalent

depth is referred to as the external or barotropic mode.

This is because this mode has a vertical profile of hori-

zontal divergence with the same sign throughout the atmos-

phere. The other modes associated with smaller equivalent

depths are referred to as internal modes. These modes are

oscillatory in the vertical. For a given equivalent depth,

zonal wavenumber and meridional mode there exist three sets

of eigenfrequencies and eigenfunctions. Two are eastward-

5
. 55

' p

6



and westward-propagating gravity waves and the third is a

westward propagating Rossby-Haurwitz type wave. The phase

speeds of these waves are related to equivalent depth, meri-

dional mode and zonal wavenumber. For the Rossby type wave

the fastest phase s peed occurs with the largest equivalent

depth and smallest meridional mode and zonal wavenumber.

The period of this gravest, symmetric zonal wavenumber one

Rossby mode is almost exactly 5 days. There is observa-

tional evidence for the existerce of this wave(Madden and

Julian, 1972) and there is also evidence that some of the

planetary wave error in numerical models is in part due to

the spurious excitation of these large scale external Rossby

modes (Daley et al, 1981). The following transient modes

which were observed in the three different parts of this

study are:

1. the mode which moved at the speed of the mean wind

in the case where the model atmosphere was being

brought to a steady state,

2. the mode which moved at the speed of the mean wind in

the case where the model heating was turned off,

3. the westward moving modes in the case where error was

introduced into the rotational part of the wind.

These modes may be explainable in terms of these external

and internal Rossby modes. The mode which is moving at the

speed of mean wind may be a slow westward moving internal

mode which is overwhelmed by the mean wind. The westward

moving modes in the last experiment are most likely internal

modes as well but are probably associated with larger equiv-

alent depths than those of the earlier experiments. Since

phase speed for a given wavenumber and meridional mode

.* increases with increasing equivalent depth, these waves

would have a greater westward phase speed and would be less

counterbalanced by the mean wind. Given a large enough

westward phase speed one would actually see a westward
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propagation indicated on the harmonic dials. The low

frequency modes in the first two parts of this study were

most likely excited by the discontinuous nature of the

forcing. Numerical studies by Geisler and Dickinson (1976)

indicate that even when the forcing is gradually turned on

that low frequency Rossby modes are excited. An analytic

study by Clark (1972) also showed that a mode which moved at

the speed of the mean wind would be excited by a switch on

of a vertical velocity or temperature disturbance. However,

this mode was only cne of a nuaber of modes which would be

excited and it was also found to decay with time. Thus, it

is possible that the transient modes which were observed to

move at the speed of the meat wind are in fact internal

Rossby modes. The fact that internal Rossby modes might
have been excited when errors were introduced into the rota-

tional Fart of the wind is consistent with the results of

Daley et al (1981) who found that errors in the rotational

wind will cause a spurious excitation of these modes.

However, it must be pointed out that since the results of

this study were analyzed using spherical harmonics rather

than normal modes it is impossible to confirm the above

hypothesis. The question that might now be asked is why
wasn't the external karotropic node excited in these experi-

ments? The studies by Geisler and Dickinson and Clark found

* that this mode would be excited. Clark found that this mode

would in fact be the dominate mcde. The crucial difference

*_ between the analytic model of Clark , the numerical model of

Geisler and Dickinson and the model in this study is that

this model does not have a vertical wind shear while the

* aforementioned models do. This lack of vertical shear is

the most probable reason why the barotropic mode was not

excited. In the absence of a mean vertical shear the

heating specified in this model will produce low pressure at

the surface and a high pressure aloft. The vorticities
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associated with each will be of the same magnitude so that

the vertically averaged vorticity vanishes and there can be

no barotropic mode response. Rhen a mean vertical shear is

present there is a differential advection affect and the

upper and lower vorticities dc not exactly cancel, thus

allowing the possiblity of a barotropic mode

Given the slow phase speed of the transient modes

excited in this study by 'errors' in the forcing and initial

- conditions it does not appear that planetary waves are very

sensitive to errors. However, this apparent lack of sensi-

tivity is most likely due to the simplified conditions used

in the model rather than to the inherent nature of planetary

waves. Specifically, the lack of wind shear prohibits the

excitation of the fast external Rossby wave. The external

mode has a fast phase speed ( 72 O/day) and if excited it

could rapidly propagate throughout the region of integra-

tion.

The results obtained by heating in this study might also
have been obtained by including topography along with a

stronger surface friction term. Future studies should

investigate the sensitivity of planetary wave to errors in

topography as well as heating. In addition, future studies

will have to use a more realistic vertical wind profile.

Due to the lack of a realistic wind profile, which prohibits

the excitations of the external barotropic mode, any conclu-

sions about the sensitivity of planetary waves to initial

conditions and forcing must be delayed until more comprehen-

sive studies are completed.

58



LIST OF REFERENCES

Arakawa, A., and H. J. Suarez,.198 : Vertical differencing
of the primitive equations in sigma coordinates. Mon.
Wea. Rev., 111, 34-45.

Baumhefner, p., and P. Downey, 1978: A comparison of six
wintertime forecasts from several numerical weather
prediction models. Proc. 12th Stanstead Seminar,
II cGill University PubliZions- i -_eEB-o-og-y Na.---I
98pp. (Detartment of Meteorclog M LcGill University, 805
Sherbroo e St. W., Montreal P.6., H3A 2K6 Canada.f

Bourke, W. 1974: A multi-level spectral model 1.
Formulation and hemispheric integrations. _3n. Wea.
Eel., 102, 687-701.

Clark J. H. E., 1972: The vertical progagtion of forced
atmospheric planetary waves. J. Atmos. Sci., 29,
1430-145 1.

Daley,.R., J. Tribbia, and D. Williamson, 1981: The excita-
on of large-scale free Rossby waves in numerical

weather predicticn. Mon. Rea. Rev., 109, 1836-1861.

Geisler, J. E. and R. E. Dicksison, 1976: The five-da wave
on a sphere with realistic zonal winds. J. Itmos.
Sci., 33, 632-641.

Haltiner G, J. and R. T. Williams, 1980: Numerical
Pre iction and Dynamic Meteoroloqz. John WileFY---,

Hoskins, B. J. and A. J. Simmons, 1975: A multi-layer spec-
tral model and the semi-iuplicit method. Oart. J.
" 1O. Meteor. Soc., 101, 631-655.

Kasahara, A., 1976: Normal modes of ultralong waves in the
atmosphere. Mon. Wea. Rev., 104, 669-690.

Lambert, S., and P. erilees 1978; A study of plaetary
wave errors in a spectral numerical weather p ediction
model. Atmos. Ocean, 16, 197-211.

Lorenz, E., 1969: The predictability of a flow which poss-
esses many scales o motion. Tellu s, 21, 248-307.

Madden R. A. and P. A. Julian, 1972: Further evidence of
qlohal-scale 5-day pressure waves. J. Atmos. Sci., 29,
I464-1469.

Morse, P. J., 1983: NOGAPS verification using spectral
ccmponents. Masters Thesis, 1aval Postgraduate cnol,
71pp.

Rosmond, T. E., 1977: Personal correspondence.

59

'.p.



INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314

2. library, Code 0142 2
Naval Postqraduate School
Monterey, CA 93943

3. Ccmmander 1
Naval Oceanography Command
NSTL Station
Bay St Louis, MS 39522

3. Ccmmander 1
Air Weather Service
Scott Air Force Base, IL 62225

4. Ccmmanding officer 1
Fleet Numerical Oceanography Center
Monterey, CA 93943

5. Ccmmanding Officer 1
Air Force Global Weather Central

.- Offutt Air Force Base, NE 68113

- 6. Cfficer-in-Charge 1
Naval Environmental Prediction Research
Facility
Monterey, CA 93943

7. Prof. C. N. K. Mooers Code 63Mr 1
Naval Postgraduate School
Monterey, CA 93943

8. Prof. R. J. Renard, Code 63Rd 1
Naval Postgraduate School
Monterey, CA 93943

9. Ma jor Patrick Herod 2
AFT/CIRF
rIgh t-Patterson AFB, OH 45433

10. Air Weather Service Technical Library 1
Scott AFB, IL 62225

11. Captain Michael E. McAtee, Code 63 2
Naval Postgraduate School
Monterey, CA 93943

12. Director of Research and Administration 1
Code 012
Naval Postgraduate School
Monterey, CA 93943

13. Prof. R. T. Williams, Code 63Wu 3
Naval Postgraduate SchoolMonterey C1 93943

60

.5.%



r. 14. Prof. M. A. Rennick Code 63
Naval Postgraduate hchool
'onterey CA 93943

15. Dr. T Rosmond
Naval Environmental Prediction Research
facility
Monterey, CA 93943

16. Dr. J. Hovermale
Naval Environmental Prediction Research
Facility
Monterey, CA 93943

17. Prof. C. H. Wash Code 63
Naval Postgraduate School
Monterey, CA 93943

V.6

I..

'V,%



FILMED

7-85

DTIC

N.; A 
. . .•-, 

- . ,, % ' '. . -'3


